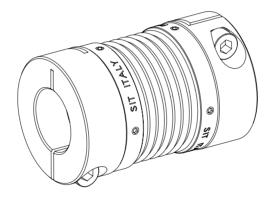


SERVOPLUS[®]

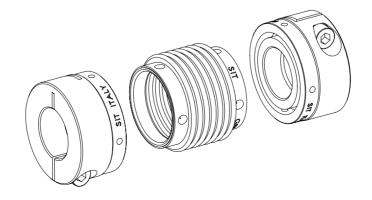

SERVOPLUS® Metallbalgkupplungen

SERVO-PLUS® Metallbalgkupplungen sind perfekt für alle Servomotor - Anwendungen geeignet, bei denen hohe Torsionssteifigkeit, spielfreie Drehmomentübertragung, geringe Massenträgheit und höchste Zuverlässigkeit gefordert ist. Das innovative Modulsystem ermöglicht schnelle Verfügbarkeit bei gleichzeitig günstigem Preisniveau.

Eigenschaften der SERVOPLUS® Metallbalgkupplungen:

- spielfrei zur exakten Übertragung höchster Drehmomente
- · geringes Massenträgheitsmoment
- hervorragende dynamische Eigenschaften für hoch belastete. schnell laufende Antriebe mit Drehmomentumkehrung
- Ausgleich von Axial-, Radial- und Winkelabweichungen
- einfache Montierbarkeit
- große Verdrehsteifigkeit
- · verschleiß- und wartungsfrei
- Einsatztemperatur bis + 300 °C
- innovativer, modularer Aufbau

Ahh 1



SERVOPLUS® High Tech Metallbalgkupplungen

Das innovative Modulsystem ermöglicht schnelle Verfügbarkeit der unterschiedlichsten Nabenkombinationen bei wettbewerbsfähigen Preisen.

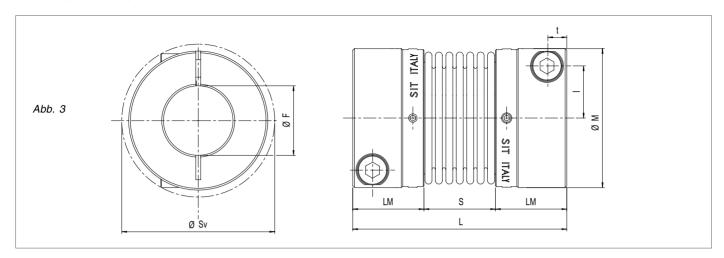
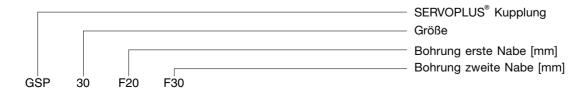

Ein Austausch des Metallbalges ist sogar möglich ohne die Nabenenden von den Wellen zu entfernen.

Abb. 2

Standardausführungen

Technische Daten:


Größe	Abmessungen								Schrauben				nd- uben	Technische Daten										
	Q	ίF	~	~~	L _м	S		_		ı	T _A (Nm)	Туре	T _A (Nm)	Moment T _{kn} (Nm)	Drehzahl¹¹ n (min⁻¹)	Massenträg- heitsmoment ²⁾ (x10 ⁻⁶ Kgm ²)	Torsions- steifigkeit (N/mm)	axiale Feder- steifigkeit (N/mm)	radiale Feder-		bweich	nungen		
	min	max	ØM	ØS _v			L	Type	t										steifigkeit (N/mm)	axial	$\Delta\mathrm{kr}$ radial (mm)	Δ a Winkel (°)	Masse (kg)	
GSP16	5	16	34	36	17	16,5	50,5	M4	4,5	12	2,9	МЗ	0,8	5	14000	14	3050	30	93	±0.5	0,2	1,5	0,082	
GSP20	8	20	40	44	20,5	21	62	M5	5,5	15	6	МЗ	0,8	15	11900	34	7000	44	130	±0.6	0,2	1,5	0,135	
GSP30	10	30	55	58	22,5	27	72	М6	6,5	20	10	M4	2	35	8700	140	16100	68	160	±0.8	0,25	2	0,289	
GSP38	14	38	65	73	26	32	84	M8	8	25	25	M4	2	65	7300	310	31000	75	225	±0.8	0,25	2	0,438	
GSP45	14	45	83	89	31	41	103	M10	9,5	30	49	M4	2	150	5800	1056	62000	85	480	±1	0,3	2	0,924	

SERVOPLUS®																								
Größe	Lieferbare Bohrungsdurchmesser und zugehörige übertragbare Reibmomente der Klemmnaben (Nm)																							
	5	6	7	8	9	10	11	12	14	15	16	18	19	20	24	25	28	30	32	35	38	40	42	45
GSP16	4,9	5,9	6,9	7,8	8,8	9,8	10,8	11,8	13,7	14,7	15,7													
GSP20				12,8	14,4	16	17,6	19,2	22,3	23,9	25,5	28,7	30,3	31,9										
GSP30							24,9	27,1	31,7	33,9	36,2	40,7	43	45,2	54,3	56,5	63,3	67,9						
GSP38												74,6	78,8	82,9	99,5	104	116	124	133	145	158			
GSP45														132	158	165	184	198	211	231	250	263	277	296

auf Anfrage lieferbare Nabenausführungen:

- konische Klemmbuchse (Spannsatz)
- konische Bohrung für FANUC Motoren

Bestellbeispiel: GSP30 - F20/30

Kupplungsauswahl

Ermittlung des zu übertragenden Momentes:

Das von der Kupplung übertragbare Moment T_{KN} muß immer größer sein als das maximal an der treibenden oder getriebenen Welle auftretende Moment.

Es bedeutet:

 T_{AS} = Spitzenmoment Motorseite (Nm) T_{LS} = Spitzenmoment Abtriebseite (Nm)

k = Betriebsfaktor

 $T_{KN} > k \cdot T_{AS/LS}$

Ermittlung des Beschleunigungsmomentes:

T_S = Beschleunigungsmoment (Motor- oder Abtriebseite)
Das Nennmoment muß größer sein als das
Beschleunigungsmoment.

TKN >
$$T_s \cdot k$$

$$T_s = T_{AS} \cdot m_A$$

$$T_s = T_{LS} \cdot m_L$$

mit

$$m_{A} = \frac{J_{A}}{J_{A} \cdot J_{L}} \quad m_{L} = \frac{J_{L}}{J_{A} \cdot J_{L}}$$

 $\mathbf{k} = 1,5$ bei gleichmäßiger Last $\mathbf{k} = 2$ bei schwellender Last

k = 2,5 - 4 bei Spitzen- oder Stoß- / Umkehrbelastung

Antriebe in Werkzeugmaschinen: k = 1,5 - 2

Bei Anwendungen mit hohen Anforderungen an die Präzision kann es wichtig sein den Übertragungsfehler wie folgt zu ermitteln:

$$\beta = \frac{180 \cdot T_{AS}}{\pi \cdot C_t} \quad \text{(Grad)}$$

Mit C_t = Torsionssteifigkeit der Kupplung

Ermittlung des Wellendurchmessers:

Nach Auswahl der Kupplung muß überprüft werden, ob die benötigten Wellendurchmesser zu der gewählten Kupplungsgröße passen (Fmin/Fmax).

Überprüfung der Fluchtungsfehler:

Die auszugleichenden Fluchtungsfehler der jeweiligen Anwendung müssen zu den zulässigen Abweichungen der gewählten Kupplung passen. Es ist zu berücksichtigen, daß die maximal zulässigen Abweichungen der Kupplung nicht alle gleichzeitig ausgenutzt werden können. Die anteiligen Abweichungswerte der jeweiligen Anwendung dürfen in Summe 100% der zulässigen Werte der Kupplung nicht überschreiten.

$$\text{Mit:} \qquad \frac{\Delta \text{ kaM}}{\Delta \text{ ka}} \bullet 100\% + \frac{\Delta \text{ krM}}{\Delta \text{ kr}} \bullet 100\% + \frac{\Delta \alpha \text{ M}}{\Delta \alpha} \bullet 100\% \ < \ 100\%$$

- ΔkaM, ΔkrM, ΔαM bedeuten Axial-, Radial- und Winkelabweichung der Maschine oder Anwendung.
- Δka, Δkr, Δα bedeuten Axial-, Radial- und Winkelabweichung der Kupplung.
- Axialabweichungen: ergeben sich meist aus Temperaturschwankungen.
- · Winkelabweichungen: Werte bis zu 2° sind zulässig.
- Radialabweichungen: der maximal zulässige Wert darf nicht überschritten werden. Ansonsten droht die Verformung des Metallbalges.

Überprüfung des übertragbaren Nabenmomentes:

Es muß überprüft werden, ob das benötigte Drehmoment des Antriebes von der Welle-Nabe-Verbindung sicher übertragen werden kann. Für besondere Anwendungen können unterschiedliche Verbindungssysteme geliefert werden. Ebenso sind Kupplungsnaben mit kleineren Bohrungen als im Katalog angegeben lieferbar. In solchen Fällen ist das übertragbare Moment der Nabe natürlich geringer als die Katalogwerte.

Technische Eigenschaften

Langlebigkeit

SERVOPLUS® Metallbalgkupplungen sind für eine unbegrenzte Anzahl von Umläufen ausgelegt, vorausgesetzt die maximal zulässigen Belastungswerte und die zulässigen Fluchtungsfehler werden nicht überschritten.

Spitzenlasten

SERVOPLUS® Metallbalgkupplungen ertragen kurzzeitig Spitzenmomente in Höhe des doppelten Nennmomentes, sofern die Welle-Nabe-Verbindung richtig ausgelegt ist.

Lagerbelastung

Durch die flexible Ausgleichung aller Arten von Fluchtungsfehlern reduzieren SERVOPLUS® Metallbalgkupplungen die Lagerbelastungen und somit auch die Wartungskosten der Maschine.

Einsatztemperatur

SERVOPLUS® Metallbalgkupplungen können ohne Einschränkungen bis + 300°C eingesetzt werden.

Wartung und Verschleiß

SERVOPLUS® Metallbalgkupplungen sind verschleiß- und wartungsfrei.

Montagehinweise

SERVOPLUS® Metallbalgkupplungen werden einbaufertig mit Fertigbohrung geliefert.

- Die Kontaktflächen sorgfältig säubern
- Kupplung auf die Wellenenden aufsetzen und die radialen Klemmschrauben schrittweise bis zum angegebenen Drehmoment T_A anziehen.

Ausbau

- Radiale Klemmschrauben lösen
- Antrieb entfernen und Kupplung ausbauen

Die innovative Konstruktion der SERVOPLUS® Metallbalgkupplungen ermöglicht den Ausbau der Kupplung oder den Austausch des Metallbalges ohne den gesamten Antrieb zu entfernen.

- Bundschrauben lösen
- Radiale Klemmschrauben lösen
- Klemmnaben auf den Wellenenden verschieben
- Metallbalg und Klemmnaben entfernen

Wellenqualität für sichere Momentübertragung:

- Durchmessertoleranz h₆
- Oberflächenrauigkeit R_{tmax} 16µ

ACHTUNG!

Bei der Montage und Demontage ist äußerst vorsichtig vorzugehen. Durch Beschädigung des Metallbalges kann die Kupplung unbrauchbar werden.

Sicherheitshinweis!

Alle rotierenden Teile müssen gegen unbeabsichtigte Berührung durch Personen geschützt sein. Der Schutz ist so auszuführen, daß selbst beim Bruch der Kupplung keine Gefahr für Personen oder Gerätschaften besteht.